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INTRODUCTION 

Since the recognition of the Earth’s approximately spherical shape, one of the central 

challenges in cartography has been the construction of accurate maps of the Earth’s surface that 

are suitable for navigation. Representing a curved surface on a plane inevitably introduces 

distortions, making the development of reliable map projections a longstanding mathematical 

and practical problem. Despite its importance, many standard cartography texts devote limited 

attention to the underlying mathematical principles involved in map construction. Conversely, 

existing treatments of this problem in differential geometry or vector calculus often suffer from 

pedagogical limitations. In particular, the historical motivation behind map projections is 

frequently overlooked, key concepts are sometimes introduced without sufficient explanation of 

their origins or applications, and essential formulas are presented with little discussion of their 

derivation. 

The present work seeks to address these issues by offering a conceptually clear and 

mathematically motivated introduction to the use of differential geometry in cartography. The 

exposition is designed to be accessible to first- and second-year university students who possess a 

basic understanding of multivariable calculus. Rather than providing an exhaustive treatment of 

terrestrial projections, the focus is on illustrating the fundamental geometric difficulties involved 

through the study of several classical and representative projections. The term projection refers 

to the process of mapping the Earth’s surface onto simpler geometric surfaces such as a plane, a 

cylinder, or a cone, all of which have zero Gaussian curvature. Examining these mappings 

highlights the intrinsic limitations imposed by curvature and helps explain why certain geometric 

properties cannot be preserved simultaneously. The significance of this work lies in its alternative 

approach to presenting classical projections, emphasizing intuitive reasoning and analytical 

methods drawn from calculus. In doing so, it demonstrates that techniques from multivariable 

calculus can serve as an effective and complementary tool to differential geometry in 

understanding cartographic projections. 
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To establish a consistent framework, we introduce some basic notation. The partial 

derivative of a function f = f(u, v) with respect to the variable u is denoted by fu. All functions 

considered are assumed to be infinitely differentiable. The standard inner product of vectors u 

and v in ℝ3 is written as ⟨u, v⟩, and the corresponding Euclidean norm of a vector u is denoted by 

∥ u ∥. The symbols λ and φ represent geographical longitude and latitude, respectively, both 

measured in radians, with λ ∈ [0,2π] and φ ∈ [−π/2, π/2]. Finally, the radius of the Earth is 

denoted by R. 

Maps and the Conformality Property 

A map may be viewed as a planar representation of a portion of the Earth’s surface. From 

a mathematical perspective, a map can be described as a subset D ⊂ ℝ2 such that each point (u, 

v) ∈ D corresponds uniquely to a point on the Earth. This correspondence is modeled by a 

mapping 

r: D → Earth, r = r(u, v), (u, v) ∈ D. (1) 

 

It is a well-established result that a spherical surface cannot be mapped onto a plane without 

introducing distortion in at least one of the fundamental geometric quantities lengths, angles, or 

areas. This fact follows directly from Gauss’s Theorema Egregium, which shows that Gaussian 

curvature is an intrinsic invariant of a surface. Consequently, the construction of a distortion-free 

planar map of the Earth is mathematically impossible. In practical cartography, however, the 

preservation of angles is of primary importance, particularly for navigation. If the angle between 

two curves on the map is preserved under the mapping r, then it coincides with the corresponding 

angle between the curves on the Earth’s surface. This property ensures that directions measured 

on the map reflect the true directions on the globe, which is essential for determining accurate 

courses. 

To determine the conditions under which the mapping r preserves angles that is, when it 

is conformal, we introduce the coefficients of the first fundamental form: 

E = ⟨ru, ru⟩, F = ⟨ru, rv⟩, G = ⟨rv, rv⟩. 
 
Since the coordinate lines u = constant and v = constant in the plane are perpendicular, angle 

preservation requires that their images under ralso intersect orthogonally. This condition implies 

F = 0. 

Next, consider two straight lines in the map passing through the point P0 = (u0, v0), with 
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parametric representations 

γ1(t) = (u0, v0) + t(1,0), γ2(t) = (u0, v0) + t(a, b), 

where (a, b) ≠ (0,0). These lines intersect at t = 0, and the angle θ between them in the plane 

satisfies 

cos θ = 
a 

 . 
√a2 + b2 

If the mapping r preserves angles, then the angle between the curves r(γ1(t)) and r(γ2(t)) on the 

Earth must also be θ. This angle is determined by the tangent vectors at the point r(P0). A direct 

computation shows that 

d d 

dt 
r(γ1(t)) ∣t=0= ru(P0), 

dt 
r(γ2(t)) ∣t=0= aru(P0) + brv(P0). 

Since F = 0, the cosine of the angle between these tangent vectors is given by 
 

cos θ = 
aE 

 . 
√E√a2E + b2G 

 
 

Comparing this expression with the planar value of cos θ and simplifying, we obtain the 

condition 

E = G. 

Conversely, if E = G and F = 0, then the mapping r preserves angles at every point. Hence, we 

arrive at the following fundamental result: a map is conformal if and only if the coefficients of its 

first fundamental form satisfy E = G and F = 0. 

 

Theorem 2.1: Let r: D ⊂ ℝ2 → Earth be a differentiable mapping representing a portion of the 

Earth’s surface on a plane. Then r preserves angles (i.e., is conformal) if and only if the 

coefficients of the first fundamental form satisfy 

E = G and F = 0, 

where 

E = ⟨ru, ru⟩, F = ⟨ru, rv⟩, G = ⟨rv, rv⟩. 
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2 2 

Remark: This condition ensures that the angle between any two intersecting curves on the map is 

equal to the corresponding angle on the Earth’s surface, a property essential for accurate 

navigation and conformal mapping. 

 

The Mercator Projection 

Consider a simple rectangular map where meridians and parallels are represented by 

equally spaced vertical and horizontal lines, respectively. Let A and B be constants such that 

increments in map coordinates u and v correspond to increments in longitude and latitude, i.e., 

 Δu = AΔλ and Δv = BΔ𝛟. If H and V denote the horizontal and vertical extents of the map, then 

the mapping 

 

r: [0, H] × [0, V] → Earth, r(u, v) = (longitude λ(u) = Au, latitude 𝛟(v) = Bv) 

associates each map point (u, v) to a point on the Earth. Expressed in Cartesian coordinates on 

the sphere of radius R, 

r(u, v) = R(cos (Bv)cos (Au), cos (Bv)sin (Au), sin (Bv)). 
 

For this mapping, the coefficients of the first fundamental form are 

E = R2A2cos 2(Bv), G = R2B2, F = 0, 

which clearly shows E ≠ G. According to Theorem 2.1, this mapping does not preserve angles, 

and hence is not conformal. 

To construct a conformal map, one must adjust the relationship between map 

coordinates (u, v) and spherical coordinates (λ, 𝛟). Let λ(u) and 𝛟(v)denote the longitude and 

latitude corresponding to (u, v). The mapping then becomes 

r(u, v) = R(cos (𝛟(v))cos (λ(u)), cos (𝛟(v))sin (λ(u)), sin (𝛟(v))), 

with 
 

 

E = R2 (
dλ

) 
du 

 

 
d𝛟 2 

cos (𝛟(v)), F = 0, G = R ( ) . 
dv 

For conformality, E = G and F = 0 must hold, leading to 

dλ 
cos (𝛟) 

du 

d𝛟 
= . 

dv 
 
 
 
 

2 
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Since the left-hand side depends only on u and the right-hand side only on v, both sides must 

equal a constant K. Solving these differential equations yields 

1 1 u =  λ, v = 𝛟 π 

K K 
log tan (2 + 4), 

 

which defines the Mercator projection. Here, K determines the map scale, with 1 cm on the 

equator corresponding to KRcm on the Earth's surface. However, distances along parallels shrink 

by a factor of cos 𝛟, resulting in significant distortion near the poles. Therefore, the Mercator 

projection is typically used only for regions far from the poles. 

 

An important advantage of the Mercator projection is its treatment of loxodromes (curves of 

constant bearing). On the sphere, a loxodrome intersects meridians at a constant angle. Under the 

Mercator projection, loxodromes are represented as straight lines on the map, given by 

u = vtan θ + C, 
 

where θ is the angle with the meridians, and C is a constant determined by a reference point. This 

property is particularly valuable in navigation, as it allows sailors to follow a constant compass 

bearing along a straight path on the map. 

 

The Mercator Projection and Its Limitations in Political and Geographic Representation 

 

While the Mercator projection is highly effective for navigation, it is unsuitable for 

political mapping or general geographic education due to its severe distortion of areas. For 

instance, on a Mercator map, India and Scandinavia appear to be roughly the same size, despite 

India being more than three times larger. Similarly, South America seems smaller than Europe, 

even though its actual area is almost twice that of Europe. Such misrepresentations arise from 

the intrinsic properties of the projection. 

 

 



International Journal of Universal Science and Engineering                                    http://www.ijuse.in  

 

(IJUSE) 2015, Vol. No. 1, Jan-Dec                                               e-ISSN: 2454-759X, p-ISSN: 2454-7581 

 

81 

INTERNATIONAL JOURNAL OF UNIVERSAL SCIENCE AND ENGINEERING 

 

Consider a rectangular region on the Mercator map, 

D = [u1, u2] × [v1, v2], 

which corresponds to the region r(D)on the Earth. Since the mapping satisfies E = G and F = 0, 

the area of the corresponding region on the sphere is given by 
 

Area(r(D)) = ∬√EG − F2 du dv = ∬E  du dv. (6) 
D 

Using the expressions for Eand G, we have 

E = G = R2 (
d𝛟

) 
dv 

D 
 
 

 

= R2K2cos 2 𝛟(v). 

Hence, if Δu = u2 − u1, the area of r(D) becomes 

v2 

Area(r(D)) = ∬ R2 K2cos 2 𝛟(v) du dv = R2K2 Δu ∫  cos 2 𝛟(v) dv. (7) 
D v1 

Although this integral can be evaluated explicitly (noting that cos 𝛟 = 1/cosh (Kv)), a 

qualitative analysis suffices to explain the distortion. The factor Δu indicates that the area 

depends on the longitudinal extent but not on the absolute longitude. Therefore, distances in the 

east–west direction are not distorted. However, the factor cos 2 𝛟(v) decreases as the latitude 

𝛟approaches ±π/2 (near the poles). Consequently, regions at higher latitudes appear 

significantly enlarged compared to regions of equal area near the equator. 

This explains why regions with identical actual areas can appear drastically different in size on 

the Mercator map. Areas closer to the poles are exaggerated, which makes the Mercator 

projection unsuitable for accurate visual comparisons in politics or geography, despite its 

navigational advantages. 

CONCLUSIONS 

In this work, several classical map projections have been examined and analyzed, highlighting 

their mathematical properties and limitations. While many additional projections are discussed 

in the geodesy and cartography literature, our focus has been on demonstrating the underlying 

principles through analytic methods. Traditionally, geometrical approaches are employed in 

geodetic studies to study map projections, but this work shows that analytic techniques based on 

calculus and differential geometry provide a valid and effective alternative. These methods not 

only offer precise quantitative insights into distortions but also serve as a complementary 

framework for understanding and deriving projections, as further elaborated in the referenced 

literature.

2 
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